Antifungal resistance mechanisms in pathogenic fungi

Shivaprakash M Rudramurthy

Additional Professor, Mycology Division Center of Advanced Research in Medical Mycology, National Culture Collection of Pathogenic Fungi & WHO Collaborating Center Postgraduate Institute of Medical Education & Research Chandigarh – 160012, India

Antifungal drugs -by structure

• POLYENES

Amphotericin B, nystatin

• AZOLES

Imidazoles: Ketoconazole..

Triazoles: Fluconazole, itraconazole, voriconazole, posaconazole, ravuconazole

• ALLYLAMINES

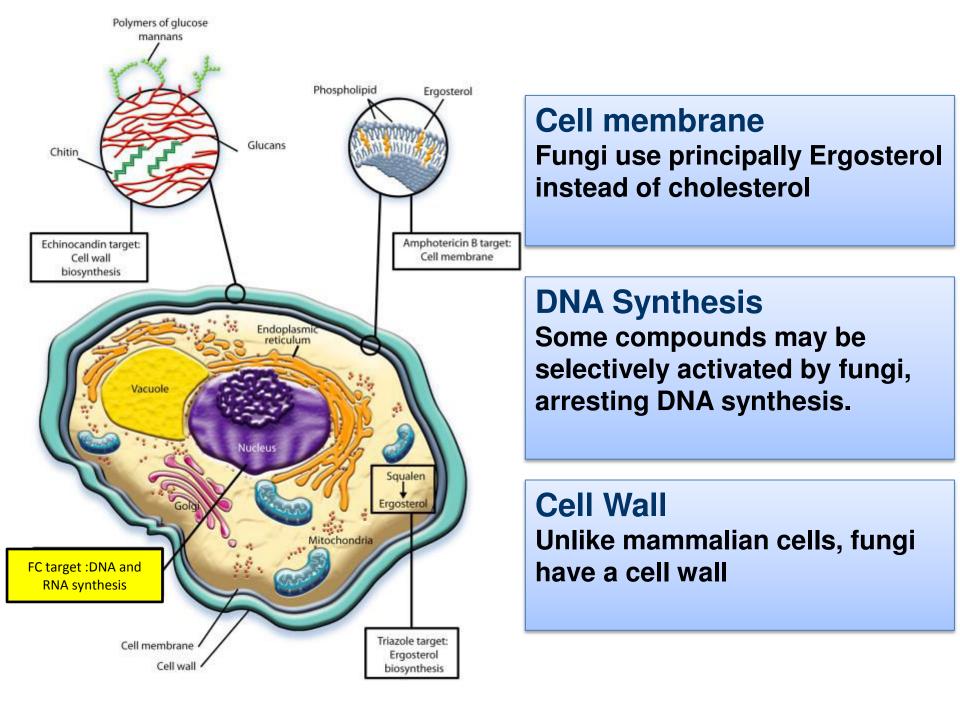
Terbinafine, butenafine

• MORPHOLINE

Amorolfine

FLUORINATED PYRIMIDINE

Flucytosine


ECHINOCANDINS

Caspofungin, anidulafungin, micafungin

- **PEPTIDE-NUCLEOSIDE** Nikkomycin Z
- TETRAHYDROFURAN
 DERIVATIVES
 Sordarins, azasordarins

OTHER

Griseofulvin

Resistance terminology

Types of antifungal resistance

- Intrinsic and acquired resistance
- Microbiological and clinical resistance

Intrinsic resistance and Acquired resistance

- Intrinsic resistance
- Primary resistance
- resistance present before exposure to the drug
- intrinsically resistant and hypersusceptible strains extremes of a MIC distribution of a random collection of isolates
- Acquired resistance/ secondary resistance
- Develop. of resistance after exposure to drug
- Molecular basis of resistance can be explored

Microbiological resistance and Clinical resistance

- Clinical resistance
 - infection persists despite treatment with an antifungal drug
 - infecting fungus could show normal susceptibility to the agent in vitro
 - antifungal fails to reach the infected site in sufficient quantity
 - Immune system is unable to clear the fungus inhibited in growth by the antifungal

- Microbiological resistance
 - infecting fungus shows in vitro resistance
 - patient responds clinically to the treatment
 - Patients own immune system clears the infection
 - agent reaches the target site in unusually high quantity
 - agent interacts synergistically with other molecules at the site of infection

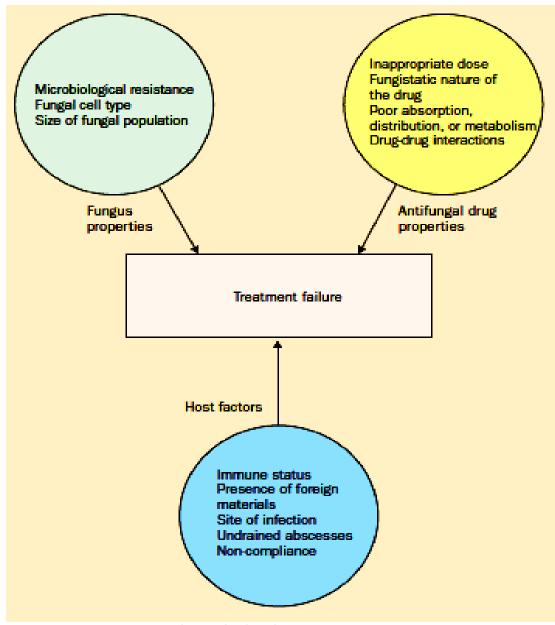
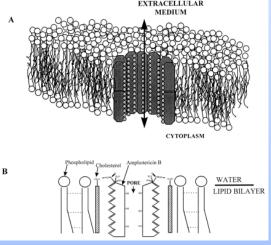
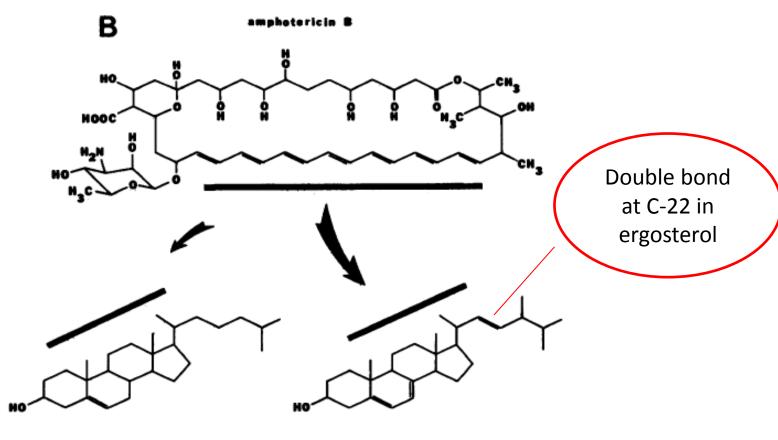



Figure 1. Principal causes of antitungal treatment failure.


Amphotericin B

- Binds ergosterol in fungal cell membrane
- Creates transmembrane channel and electrolyte leakage.

Amphotericin B and ergosterol specificity

0

cholesterol

ergesterel

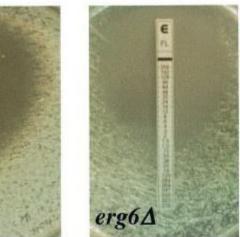
Amphotericin B - Clinical Uses

The drug of choice for:

- Cryptococcal meningitis
- Mucormycosis (zygomycosis)
- Aspergillosis
- Invasive fungal infection, not responding to other therapy

AmpB resistance

- Intrinsic resistance
- Scedosporium spp.
- A. tereus
- Fusarium spp.
- C. lusitanie
- Trichosporon beigelli
- Secondary resistance
- rare
- Occ. seen in isolates from heavily IC patients

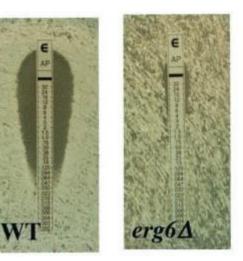

Mechanisms of amphotericin B resistance

Amphotericin B resistant fungi

- Quantitative or qualitative alterations in the lipid composition of cell membrane
- \downarrow or \uparrow ergosterol content limiting the binding of drug

AMB resistance in C. lusitanie

- Disruption of ergosterol biosynthesis
- ERG6 a non-essential gene
- Mutation in ERG6(Sterol methyltransferase)
- erg6 mutant strains
- resistance to Polyenes
- decreased ergosterol content



8 16

2 4

1

amphotericin B

fluconazole

WT

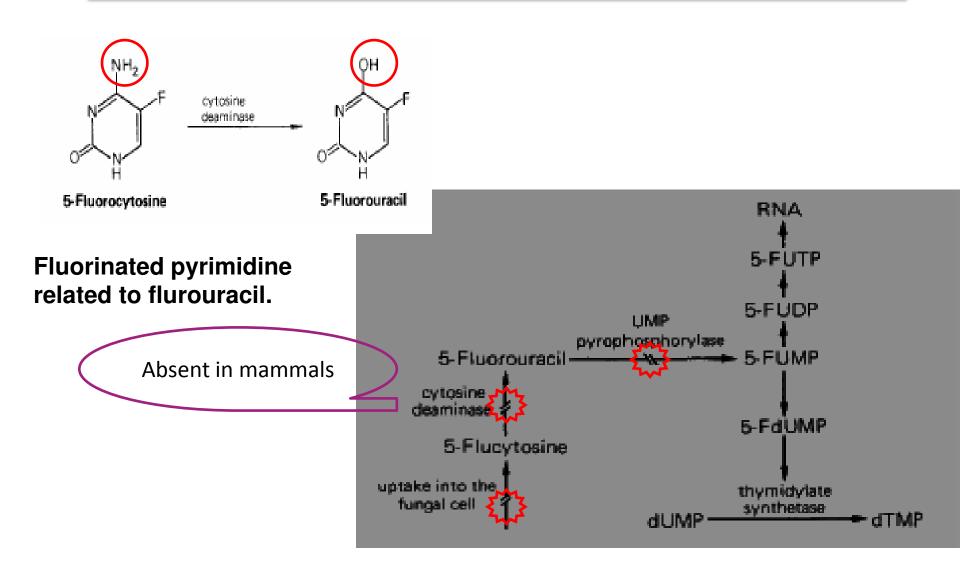
0.008 0.016 0.03 0.06 0.125 0.25 0.5

fluconazole amphotericin B

Flucytosine – Clinical uses

Monotherapy - now limited

- Candidiasis
- Cryptococcosis
- Chromoblastomycosis


In combination with amphotericin B or fluconazole.

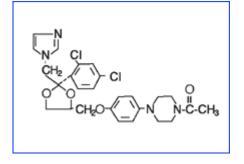
Flucytosine

- Acquired Resistance:
 - result of monotherapy
 - rapid onset
 - decreased uptake (loss of cytosine permease activity e.g., *C. glabrata*
 - altered 5-FC metabolism (loss of cytosine deaminase or UMP pyrophosphorylase activity)

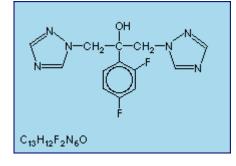
e.g., C. albicans & Cryptococcus neoformans

Flucytosine



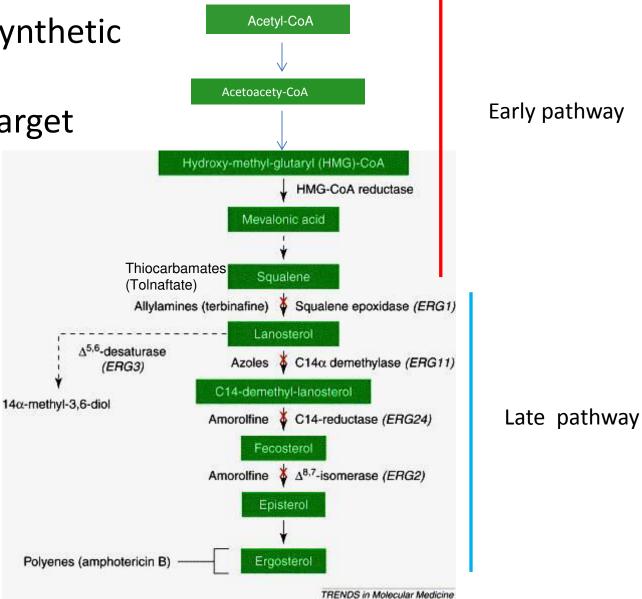

Ergosterol Biosynthesis Inhibitors(EBIs)

- Azoles
- Morpholines
- Allylamines
- Thiocarbamates


Azoles

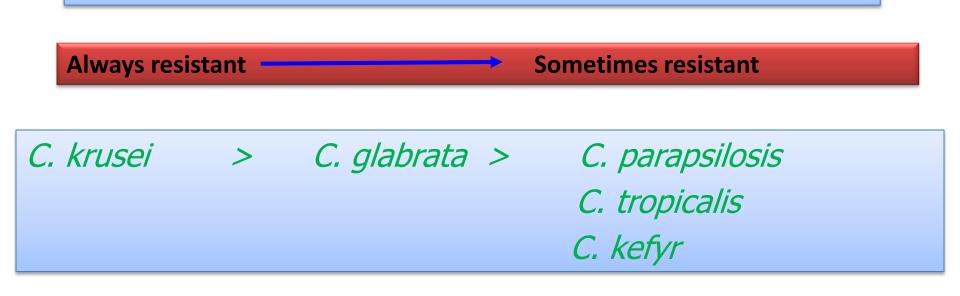
- Most important EBIs
- Demethylation inhibitors(DMIs)

Ketoconazole

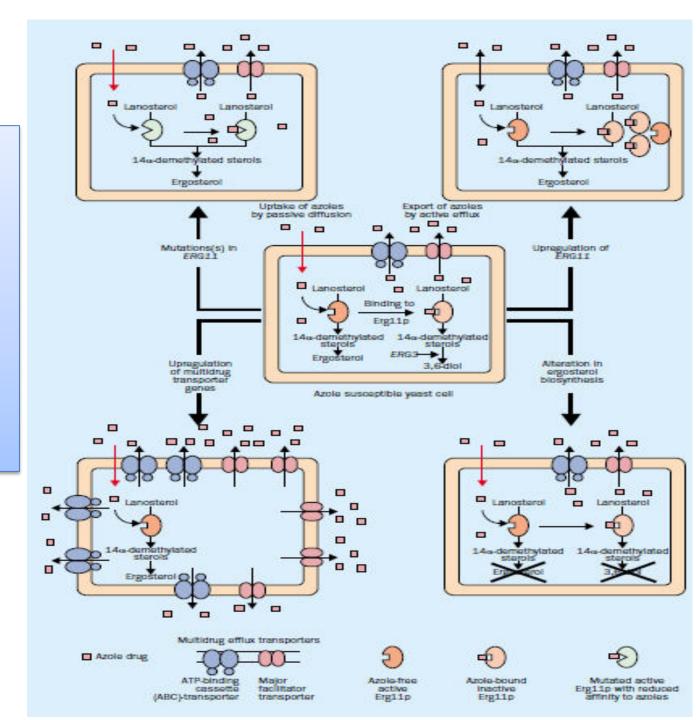


Imidazoles:

- Limited use for treatment of systemic fungal infections
- localized surface infections


Fluconazole

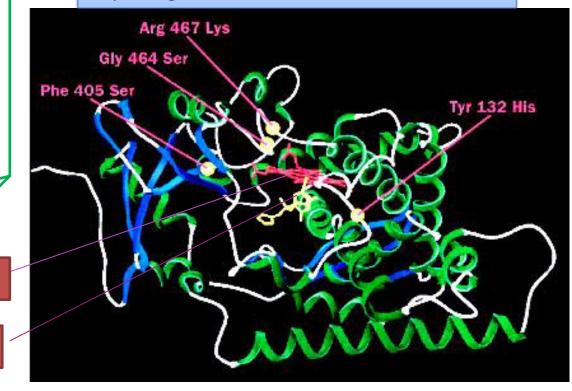
Ergosterol synthetic Pathway antifungal target


Fluconazole - spectrum

- Good activity against *C. albicans* and *Cryptococcus neoformans*
- Non-albicans Candida species more likely to exhibit primary resistance

Mechanisms of azole resistance

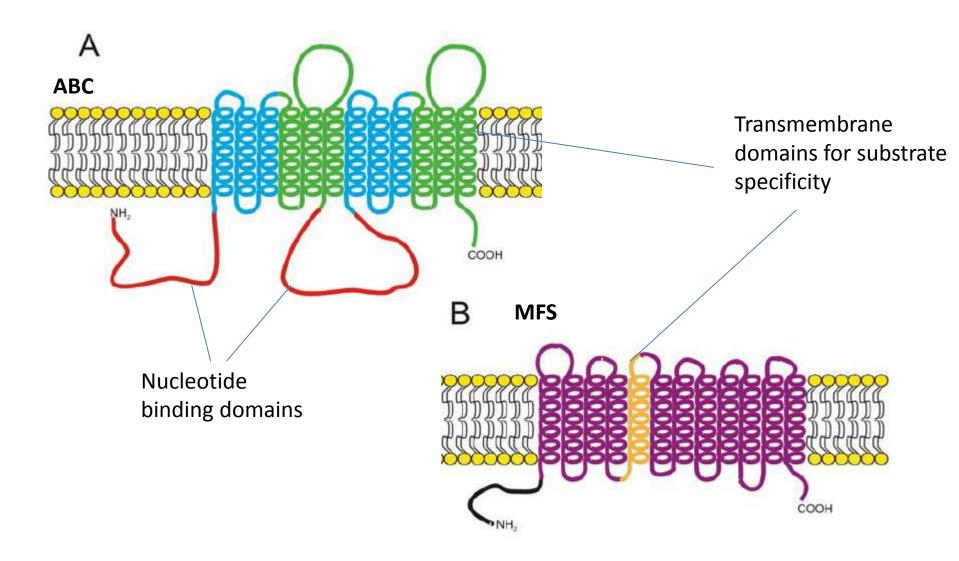
- Enhanced efflux of agent
- Alteration of target enzyme
- Overexpression of target enzyme
- Alteration of Ergosterol pathway

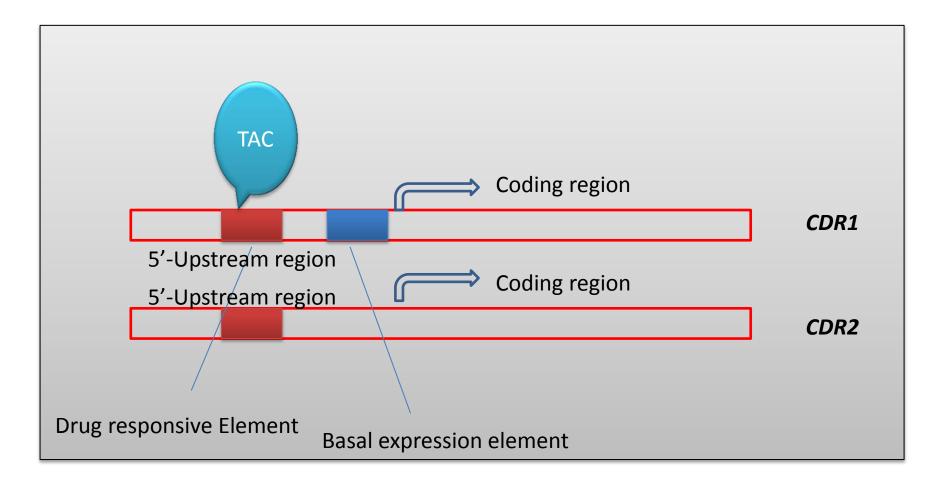


Intrinsic resistance to fluconazole in *C. krusei* Is due to reduced affinity of Erg11p to the drug as a result of point mutations in it.

Heme

Fluconazole


Crystal structure of Erg11p (CytP450) depicting Heme - Flu interaction


Drug efflux transporters

- Fungi overcome intracellular toxin accumulation by efflux pumps
- ABC transporters(ATP driven)
- MFS transporters(Proton gradient)
- Fungi 10 to 30 genes encoding transporters per 10⁶ bp of genome
- MFS transporters most common in all sequenced fungal genomes

Structure of ABC and MFS transporters

Efflux pump transporters in azole resistance in *Candida* spp.

- CDR1 and CDR2
- General phospholipid translocators
- Fluconazole resistance
- Most common mechanism of azole resistance in clinical strains of *C. albicans*
- Increased transcriptional activation of CDR1 and increased mRNA stability in fluconazole resistant isolates of C. albicans

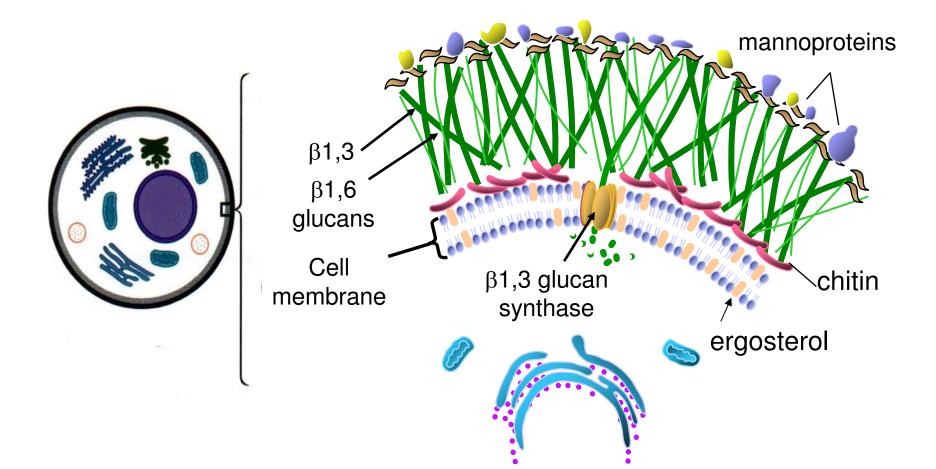
Raman et al, Antimicrob agents Chemother, 2008

Smirti et al, Yeast 2002

Type of resistance	Candida species	Author and date	Name of Journal	principle mechanisms of resistance
Azole resistance	C .tropicalis(n=52)	Jiang et al,2013	J antimicrob Chemother	 High ERG 11 expression(n= 31) Miss-sense mutations in ERG11 (12)
Azole resistance	<i>C .tropicalis</i> (n=1)	Vandeputte et al 2005	Antimicrob agents Chemother	Overexpression of Ct <i>ERG</i> 11
Azole resistance	<i>Candida</i> spp. (n=4)	Henry et al, 2000	Antimicrob agents Chemother	 Global ERG upregulation

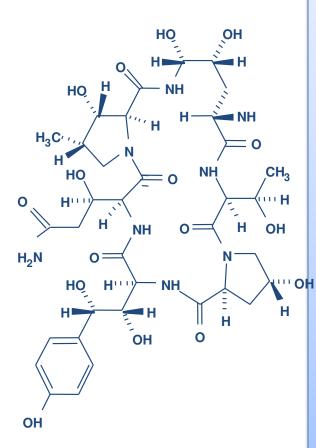
Type of resistance	Candida species	Author and date	Name of Journal	principle mechanisms of resistance
Azole Resistance	C.parapsilosis(n=3)	Silva et al,2011	Antimicrob agents Chemother	Overexpession of MDR1,an MFS transporter
Fluconazole resistance	C.albicans(n=1)	Yan et al,2008	Acta Biochim Biophys sin	Mutation in TAC TF resulting in Cdr1 and Cdr2
Azole resistance	C.albicans(n=2)	Morio et al,2012	J antimicrob Chemother	Sterol ∆ ^{5,6} desaturase(ERG3)
Azole resistance	C.albicans	Martel et al,2010	Antimicrob agents Chemother	Mutations in Erg3 (mainly) and Erg11

Drug resistance in *Cryptococcus neoformans*


- Drug resistance in *Cryptococcus* is a complex problem
- Underlying disease of the patient
- Secondary complications- hydrocephalus, drug intolerance, poor drug compliance, PK issues & development of primary or secondary drug resistance

Drug resistance in Cryptococcus neoformans

- Ketoconazole
 - Limited penetration into CNS
 - ineffective in Cryptococcal meningitis
 - successfully used to treat extrameningial cases
- Fluconazole
 - Fails to eliminate infection from genito- urinary tract in disseminated cryptococcosis
 - in vitro resistance due to overexpression of ABC efflux pump Afr1


- Amphotericin B failure
 - direct drug-related nephrotoxicity with the high doses required for treatment of meningitis.
- Innate resistance to echinocandins as *Cryptococcus* has little or no β(1,3)-D-glucan synthase enzyme

Echinocandins

Atlas of fungal Infections, Richard Diamond Ed. 1999 Introduction to Medical Mycology. Merck and Co. 2001

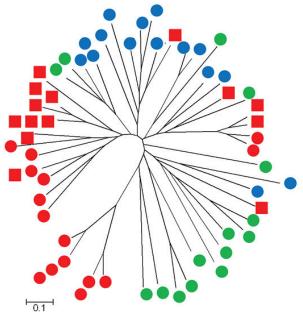
Echinocandins - Pharmacology

- Cyclic lipopeptide antibiotics that interfere with fungal cell wall synthesis by inhibition of B-(1,3) Dglucan synthase
- Loss of cell wall glucan results in osmotic fragility

Spectrum:

- Candida species *including nonalbicans* isolates resistant to fluconazole
- Aspergillus spp. but not activity against other moulds (Fusarium, Zygomycetes)
- No coverage of Cryptococcus neoformans

Azole resistance in the A. fumigatus


- DMIs have in vitro activity against A. fumigatus and their molecule structure are highly similar to clinically licensed triazoles.
- Azole resistant *A. fumigatus* isolates contain an alteration in the target protein sterol 14 α demethylase (Cyp51) inhibiting drug binding.
- Changes are due to single nucleotide polymorphisms in the gene (cyp51A) encoding the protein leading to amino acid substitutions.

Aspergillosis due to Voriconazole Highly Resistant *Aspergillus fumigatus* and Recovery of Genetically Related Resistant Isolates From Domiciles

Jan W. M. van der Linden,^{1,2,a} Simone M. T. Camps,^{1,2,a} Greetje A. Kampinga,³ Jan P. A. Arends,³ Yvette J. Debets-Ossenkopp,⁴ Pieter J. A. Haas,⁵ Bart J. A. Rijnders,⁶ Ed J. Kuijper,⁷ Frank H. van Tiel,⁸ János Varga,⁹ Anna Karawajczyk,¹⁰ J. Zoll,^{1,2} Willem J. G. Melchers,^{1,2} and Paul E. Verweij^{1,2}

- Study period 1315 A. fumigatus isolates from 921 patients screened for resistance.
- Prevalence of azole resistance was 6.8% (63 of 921 patients)
- TR34/L98H 74.6% (47/63)
- TR46/Y121F/T289A –20.6% (13 patients)
- No mutation in Cyp51A 3 patients

Clinical Infectious Diseases 2013;57(4):513-20

 Microsatellite genotypes of the clinical and environmental resistant TR 46 /Y121F/T289A isolates, compared with TR 34/L98H and wild-type controls

Azole resistance in the A. fumigatus

- Alterations at codon 98 (L98H) of cyp51A is predominantly associated with resistance
 - 94% in The Netherlands, 53% in Spain
- Resistance is also associated with an increase in target concentration.
- Strains with L98H also contain a 34-base tandem repeat in the promoter region which causes an eight-fold increase in expression of the *cyp51A gene (TR34/L98H)*.

TR34/L98H

- First emerged in 1998 Dutch patients and endemic in Dutch Hospitals
- Now reported form other parts of Europe, China and India
- Seen both in azole –treated and azole- naïve patients
- Molecular typing studies

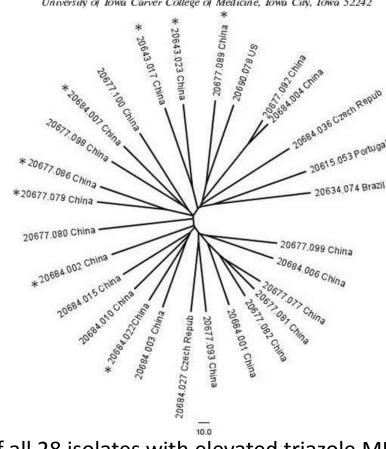
Fungicide driven route of resistance development carries high risk of geographical migration of this resistance trait

Mechanism of Resistance Development

Environmental exposure to 14α demethylase inhibitors (DMIs)

Substitution at codon 98 in the *Cyp51A* gene 34 base-pair tandem repeat in the gene promoter $TR_{34}/L98H$ DMIs inhibit fungal Cyp51A

activity


ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Sept. 2011, p. 4465–4468 0066-4804/11/\$12.00 doi:10.1128/AAC.00185-11 Copyright © 2011, American Society for Microbiology. All Rights Reserved.

Azole Resistance in Aspergillus fumigatus Isolates from the ARTEMIS Global Surveillance Study Is Primarily Due to the TR/L98H Mutation in the cyp51A Gene^{∇}

Shawn R. Lockhart,¹* João P. Frade,¹ Kizee A. Etienne,¹ Michael A. Pfaller,² Daniel J. Diekema,^{2,3} and S. Arunmozhi Balajee¹

Mycotic Diseases Branch, Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333,¹ and Department of Pathology² and Department of Internal Medicine,³ University of Iowa Carver College of Medicine, Iowa City, Iowa 52242

28 isolates with high triazole MICs From: Brazil, China, Czech Republic, Portugal, USA

Survey of 497 A. fumigatus

• Years 2008-2009

 Part of ARTEMIS global surveillance study

Dendrogram of all 28 isolates with elevated triazole MIC values. Isolates with the TR/L98H mutation are marked with an asterisk

Vol. 55, No. 9

Emergence of New Resistance Mechanism

- In Jan 2010 A. fumigatus isolated Voriconazole well
- MIC of Vori >16mg/L, Itra -2mg/L and posa -0.5mg/L
- Sequencing analysis of Cyp51A 2 mutation substitutions
 Y121F and T289A
- 46 bp tandem repeat in promoter gene promoter
- TR46/Y121F/T289A

Echinocandin resistance

- Manipulated or laboratory-selected strains with various degrees of caspofungin resistance have been described.
- They have mutations in the *ECM33 gene* (*AfuEcm33*), *encoding cell* wall proteins important for fungal cell wall organization.
- Laboratory engineered strains with mutations in the *FKS1 gene* encoding a subunit of the β -1,3-Dglucan synthase enzyme and decreased susceptibility to caspofungin have been generated (Gardiner et al *Med Mycol 2005)*

Summary of genetic mechanisms leading to antifungal resistance

	11 11 1,Cdr2 1, Cdr2, Snq2 r1	pergillus Cyp51A Cyp51A Mdr1, Mdr4 Mdr3
ans Erg1 ans Cdr1 rata Cdr1	11 11 1,Cdr2 1, Cdr2, Snq2 r1	Cyp51A Cyp51A Mdr1, Mdr4
ans Erg1 ans Cdr1 rata Cdr1	11 1,Cdr2 1, Cdr2, Snq2 r1	Cyp51A Mdr1, Mdr4
ans Erg1 ans Cdr1 rata Cdr1	11 1,Cdr2 1, Cdr2, Snq2 r1	Cyp51A Mdr1, Mdr4
rata Cdr1	1, Cdr2, Snq2 r1	-
rata Cdr1	1, Cdr2, Snq2 r1	-
	r1	Mdr3
ans Mdri		Mdr3
ans Tac1	:1	
rata Pdr1	1	
ans Mrr1:	1	
ans UpC	02	
ans Chro	romosome 5	
	:1	Fks1
cans Ekst		T KOT
		cans Fks1 brata Fks1, Fks2